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Method to calculate electrical forces acting on a sphere in an electrorheological fluid
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We describe a method to calculate the electrical force acting on a sphere in a suspension of dielectric spheres
in a host with a different dielectric constant, under the assumption that a spatially uniform electric field is
applied. The method uses a spectral representation for the total electrostatic energy of the composite. The force
is expressed as a certain gradient of this energy, which can be expressed in a closed analytic form rather than
evaluated as a numerical derivative. The method is applicable even when both the spheres and the host have
frequency-dependent dielectric functions and nonzero conductivities, provided the system is in the quasistatic
regime. In principle, it includes all multipolar contributions to the force, and it can be used to calculate
multibody as well as pairwise forces. We also present several numerical examples, including host fluids with
finite conductivities. The force between spheres approaches the dipole-dipole limit, as expected, at large
separations, but departs drastically from that limit when the spheres are nearly in contact. The force may also
change sign as a function of frequency when the host is a slightly conducting fluid.
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[. INTRODUCTION among the spheres. At low sphere concentrations and large

intersphere separations, this force is just that between two

An electrorheologicalER) fluid is a material whose vis- interacting electric dipoles whose magnitude is that of a
cosity changes substantially with the application of an elecsingle sphere in an external electric field. But at smaller
tric field [1]. Generally, such fluids are suspensions of spheriseparations, the force deviates from the dipole-dipole form.

cal inclusions of dielectric constart in a host fluid of a Besides this electrostatic interaction between the spheres,
different dielectric constang,,. The viscosity is believed to there are other forces acting on the spheres, including a vis-
change because the spheres acquire electric morfiiptde  cous frictional force from the host fluid, and a hard-sphere
and higher when an electric field is applied, then move un- force when the two dielectric spheres come in contact. In the
der the influence of the electrical forces between these inPresent paper, we will be concerned only with the electro-

duced moments. These forces typically cause the spheres $gatic force. . . _ _

line up in long chains parallel to the applied field, thereby A number of existing theories go beyond the dipole-dipole

increasing the viscosity of the suspension. The viscosity re@pproximation in calculating electrostatic forces in ER fluids
laxes to its usual value when the field is turned off, and thé2>—13, and several experiments have been carried out which
chainlike structure disappears are relevant to forces in the nondipole regifaee, e.g., Refs.

ER fluids have potential applications as variable ViSCOSit}{ild(')"f];'nglI&%i?g’fégeéf?&[g iE?g?hlgcsrﬁce):zfgdh%?tehi?tglr_ac-
fluids in automobile devicef2], vibration control[3], and P y P b

elsewhere. Furthermore, their operating principle is also reIEionS’ using a perturbation analysis. Creiral. [6] have de-
) ! P gp P scribed a multipole expansion for the forces acting on one
evant to other materials, such as magnetorheologM&)

fluids [4]. These are suspensions of magnetically permeabISphere in a chain of spheres in a fluid of different dielectric

: : : . i \DlEonstant, and find a strong departure from the dipolar limit
spheres in a fluid of different permeability, whose viscosity\ypen, the particles are closer than about one diameter. Davis

can be controlied by an applied magnetic field. ~ [7] has calculated the electrostatic forces between dielectric

To obtain a quantitative theory of ERand MR fluids,  soheres in a host fluid directly, using a finite-element ap-

one needs to understand the electric-field-induced forcg,ach o solve Laplace’s equation for a chain of particles in
a host dielectric. In a more recent wdr&], he has used an

integral equation approach to calculate the interparticle

*Electronic address: kwangmoo@mps.ohio-state.edu forces in ER fluids, including effects due to time-dependent
"Electronic address: stroud@mps.ohio-state.edu application of an external field, and nonlinear fluid conduc-
*Electronic address: xtli@sjtu.edu.cn tivity. A finite-element approach has also been used byefao

SElectronic address: bergman@post.tau.ac.il al. [9] to solve Laplace’s equation and obtain the electro-
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static interactions between particles in a chain of dielectrimally, Huang[31] has carried out a calculation of the force
spheres in a host fluid; they found, as in Rgf], that the acting in electrorheologicalolidsunder the application of a
dipole-dipole approximation is reasonably accurate for largenonuniform electric field, and considering both finite fre-
separations or moderate dielectric mismatches, but fails iquency and finite conductivity effects.
closely spaced particles and large mismatches. Clercx and A common feature of most of the above approaches is that
Bossis[13] have gone beyond the approximation of dipolarthey involve first calculating th&otal electrostatic energpf
interactions to include multipolar and many-body interac-the suspensions, then obtaining the forces by numerically
tions, expressed in terms of the induced multipole momentdifferentiating this energy with respect to a particle coordi-
on each sphere; they also obtain an expression for the forceste. This numerical differentiation is cumbersome and can
in terms of these induced multipole moments. be inaccurate. Referenf&3] does give an expression for the
As discussed further below, the electrical force acting on dorce, but in terms of implicitly defined multipoles. In this
sphere in an electrorheological fluid is basically the gradienpaper, by contrast, we describe a method for calculating
of the total electrostatic energy of that fluid with respect tothese forcesexplicitly, without numerical differentiation
the position of the sphere. This total electrostatic energy canthis approach is computationally much more accurate than
in turn, be expressed in terms of the effective dielectric tennumerically differentiating the energy. While our method
sor of the suspension, a quantity which has been studiechay appear to be merely a computational advance, its addi-
since the time of Maxwell. Indeed, numerous authors havéional accuracy and flexibility should make it widely appli-
calculated this tensor in a wide variety of geometries, goingable.
well beyond the regime of purely dipolar interactions. For  Specifically, our approach allows one to calculate the
example, Jeffrey16] has calculated the total energy of two electric-field-induced force between two dielectric spheres in
spheres in a suspension as a function of their separation ardhost of a different dielectric constant, at any separation. It
the dielectric mismatch. From this total energy, the force cars applicable, in principle, to spheres of unequal sizes, to
be obtained numerically as the derivative of this energy withparticles of shape other than spheres, to suspensions in which
respect to separation. Recently, the pairwise forces betweeagither the particle or the host or both have nonzero conduc-
spheres of different sizes have been calculated using the stivities, and to systems whose constituents have frequency-
called dipole-induced-dipole approximation, and even apdependent complex dielectric functions. It can also be used
proximately including the effects of other sphef&g]. Once to calculate the electrostatic force on one particle which is
again, the forces were obtained explicitly by numerically dif- part of amany-particlesystem, and thus is not limited to
ferentiating the total electrostatic energy with respect to partwo-body interaction. It should thus be useful in quite gen-
ticle coordinates. McPhedran and McKenfzi€], Suenet al.  eral circumstances including, in particular, nondilute suspen-
[19], and many others, have calculated the total energy o$ions.
spheres arranged in a periodic structure. In principle, forces Our approach starts, as do previous calculations, with a
could also be extracted from this calculation by taking nu-method for calculating the total electrostatic energy of a sus-
merical derivatives, provided that the distortions of the strucpension of(two or more spheres in a host material of dif-
ture leave it periodic. The energy of a nonperiodic suspenferent dielectric constant. We choose to express this total
sion of many spheres has been studied by Gérardy anehergy in terms of a certain pole spectrum arising from the
Ausloos[20] and by Fuet al.[21], in both cases including quasistatic resonances of the multisphere sydt2&-30.
large numbers of multipoles. Once again, forces can be exrhis representation has previously been used to calculate the
tracted, in principle, from these calculations by taking nu-frequency-dependent shear modulus, static yield stress, and
merical derivatives of the computed total energies with restructures of certain ER systerj4,32—-34. The force on a
spect to sphere coordinates. given sphere in a multisphere system involves a gradient of
Several authors have included the effects of finite conducthis energy with respect to the position of that sphere. But
tivity on forces in electrorheological fluids, and have alsorather than evaluating this derivative numerically, as in pre-
considered how such forces depend on frequency. )agis  vious work[24], we express this derivative in closed analyti-
has analyzed polarization forces and related effects of corzal form in terms of the pole spectrum and certain matrix
ductivity in ER fluids. Tanget al.[10,11] have calculated the elements involving the resonances. This expression is readily
attractive force between spherical dielectric particles in avaluated simply by diagonalizing a certain matrix, all of
conducting film. Khusid and Acrivofl2] have considered whose components are readily computed.
electric-field-induced aggregation in ER fluids, including in-  Our approach has formal similarities to the well-known
terfacial polarization of the particles, the conductivities of Hellmann-Feynman expression for forces in quantum-
both the particles and the host fluid, and dynamics arisingnechanical systemi35]. In the quantum-mechanical case,
from dielectric relaxation. Claro and Rojf23] have calcu- the force is expressed as the negative gradient of system
lated the frequency-dependent interaction energy of polarizenergy with respect to an ionic position. This energy is the
able particles in the presence of an applied laser field withirexpectation value of the Hamiltonian in the ground state.
the dipole approximation; they considered primarily opticalAccording to the Hellmann-Feynman theorem, the gradient
frequencies rather than the low frequencies more characteoperator can be moved inside the matrix element, thereby
istic of ER fluids. Maet al. [24] have considered several eliminating the need to take numerical derivatives. The
frequency-dependent properties of ER systems, starting frordellmann-Feynman force expression is the basis for many
a well-known spectral representatif?b6—3Q for the dielec- highly successful molecular dynamics studies in quantum
tric function of a two-component composite medium. Fi- systems(see, e.g., Ref[36]). In the present classical case,
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the total energy can also be expressed as a certain matrix € B,

element of an operator, and thus, just as in the quantum 1-=2=3 —, (2)

problem, the force is the gradient of that expectation value.

In this paper, we shall show that, again as in the quantunyhere

case, the gradient operator can be moved to within the matrix

element, and the need to take a numerical derivative is elimi- o= 1 3)

nated. This simplification allows, in principle, the calculation 1-¢€le,

of forces in very complicated geometries, even though, in the ) . )

present paper we shall give only relatively simple numericafa IS @ pole, and, is the corresponding residue. The poles

illustrations involving forces between two spherical particles S« @ré confined to the interval€9s, < 1. For ananisotropic
The remainder of this paper is organized as follows. InCOMposite, this form may be generalized to

Sec. Il, we present the formalism necessary to calculate the

forces in a system of two or more dielectric spheres in a host 8~ Sei - > —al (4)
medium, without taking a numerical derivative. In Sec. llI, €h o ST Sa

we give Se."_efa' numeri(_:al examples of these forces, at b?%here&- is a Kronecker delta function argl,;; is a matrix
zero and finite frequencies, for a two-sphere system. SeCtIng J I

IV presents a concluding discussion and suggestions for fu- residues. This form is general, applicable to any two-
turg work 9 99 component composite material which is made up of isotropic

constituents, but is not necessarily isotropic macroscopically.
As in the isotropic case, the poles are confined to the interval
0=s,<1.
Il. FORMALISM The poless, are the eigenvalues of a certain Hermitian
Let us assume that we have a composite consisting dlPeratorl’, and the residueB, are determined by the eigen-
spherical inclusions of isotropic dielectric constantin a ~ Vectors of that operatol is defined in terms of its operation
host of isotropic dielectric constas, both of which may be N an arbitrary functionri(r) by the relation
complex and frequency dependent. We will assume that a 1
spatially uniform electric field HE,e™“'] is applied in an T (r) EJ d3rfvf(—,> V' (r'), (5)
arbitrary directionwe takeEg rea). We also assume that the Viot r=r’|
system is in the “quasistatic regime.” In this regime, the
productké<1, wherek is the wave vector and is a char-
acteristic length scale describing the spatial variation o
e(X,w). Under these conditions, the local electric field

where the integration runs over the total volumg of all the
f'nclusions ofg. As in Ref.[37], we introduce a “bra-ket”
notation for two potential functions to denote their inner

E(Xx,w)=—V®, where ® is the electrostatic potential. Fi- product,

nally, we assume that theth spherical inclusion is centered .

atR, and has radius. The approach which we use auto- (¢l Ef *rv ¢'(r)- V). (6)
matically includes all local field effects. Vtot

_Since our force expressions differ slightly at zero and fi-physically, the eigenvalues correspond to the frequencies of
nite frequencies, we will first present the formalisnustO,  the natural electrostatic modes of the composites, at which

and then generalize the results to finiie charge can oscillate without any applied field, and the corre-
sponding eigenvectors describe the electric fields of those
modes.
A. Zero frequency It is convenient to expresE in terms of its matrix ele-
If the position of the spheres is fixed, the total electro-ments between the normalized eigenstates of isolated
static energy may be written in the form spheres. In this basis, and using E@s.and (6), it is found
s 3 thatI" has the following matrix elements:
V
w= 8_7721 21 €eijEo,iEo (1) Tremrrerm = (Wreml T ¥Rrerm) = Se8¢,00 Oy SR r7
I=1J=
+ QRfm;R’f’m’(l - 5R,R’)a (7)

whereV is the system volumes;; is a component of the
macroscopic effective dielectric tensor, afg} is a compo-  wheres; andQr¢mr'¢'m Will be given further below. Inside
nent of the applied electric field. Equatidh) is, in fact, a the sphere centered B, yr¢q(r) is equal to an eigenfunc-
possible definition ofe.jj(w) [28]. To produce this applied tion or resonance state of that isolated sphere, while outside
field, we require thatb(x)=-E,-x at the boundanB of the  that spherajr,n(r)=0. The angular dependence ,m(r)
system, which is assumed to be a closed surface encl¥sing is given by the spherical harmoni&, (6, ¢), which has an
In writing Eq. (1), we allow for the possibility that the order ¢m multipole moment of electric polarization. How-
spheres in the composite are arranged in such a way that tle&er, the eigenvalue of this state depends only:on
composite is anisotropic even though its components are not.
For anisotropic composite €, may be written in terms of
a certain pole spectrum of the composite 25-3(

SrRem= (8)

P YT
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The quantityQrmrerm represenfcs the matrix element_of MY =i vr \Y? 5 s s
I' between two states of two different, nonoverlapping Rem= | (Om1~ Om-1) 1,

spheredi.e., |R'-R|>ag+ag/) and is given by Otot
1/2
9 rer ’ U
QRem,R ¢rm é{’m: <_R) 5m,05€,1- (15)
. ee 12 | e .
=(-1)m Thus the matrix elementsl, are given explicitly by
IR’ = R|*"+1\ (20 + 1)(2¢" + 1) "
v a a
y C+€ +m-m')! M);:E(Z_\F;> (AR11+ AR1-1),
[(C+m) ! (E—m) (€ +m) ! (€ —m)1 ]2 R
i bR’ _r(M' -m)pm’-m 1/2
xem Pers (COSORr—p), © MY =-i> (Z_\R/> (AR11~AR1-1),
wheredg,_r and ¢r._r are polar and azimuthal angles of the
vector R'-R, and the functions?},, " are the associated e\ 112
. z _ R a
Legendre polynomials. MZ=2> (v) R10- (16)
If we denote the eigenfunctions bfby ,(r), thens, and R
(1) satisfy the eigenvalue equation In other words, the residues of theh eigenfunction are
B basically the square of the electric dipole moment of that
Fha(r) = Satha(r). (100 mode in thex,y, or z direction.
Sincel is a Hermitian operator, the eigenvalugsare real, Combining these results, we can re-express the matrix

and the corresponding eigenfunctions are orthogonal and clements(4) of the dielectric tensor in bra-ket notation first

be chosen to be orthonormal. Again, it is convenient to rep@S
resent them using a bra-ket notation. In this notation, the

i j
eigenfunctions are denotéd) and the orthonormality con- 8~ Seiil = U;mz M (17)
dition is & Vg s—s,
(ala’)=35, (11) \(Afg)are the explicit forms ofi | a) and{«/|j) are given by Egs.
The eigenvalues, are the poles of Eq2) or Eq. (4). We now use the above formalism to obtain an expression
The corresponding residugs,;; may be expressed in the for the force on a dielectric sphere centeredRain a sus-
same bra-ket notation as pension consisting of an arbitrary assembly of spheres. First,
we rewrite Eq.(17) as
Utot /. A e
Buii =, (i|aXalj) =M M/ . (12 . )
A v ECN (18)
. €h
The matrix elemenM! =(i| ) is basically the component of where
the electric dipole moment of the eigenfunctien in theith
Cartesian direction. |a)al 5
It is convenient to expand both the eigenfunctiemsand G(s) =2 P (si-T) (19
the statedi)(i=x,y,2), in terms of the single-sphere eigen- « “
functions iz ¢(r) mentioned above. In bra-ket notation,  is a Green’s function for this problenh,is the identity ma-
trix, and the matrix elements &f are given by Eq(7). If the
@)= 2 Aggm/REM). (13)  applied electric field i€,, the total energy takes the form
R&m
\% Utot€ . .
The expansion coefficients satisfy the normalization condi- W= S—EhEo TEg— o D Eg(i[G(9)]i)Eg.  (20)
. @ 2_ . . _ aa 87T ij
tion SgemlAxem?=1, where the indice¥=1,2,... and m
=—¢,—€+1,..., +{, respectively. Similarly, the stat¢i$ may We now write thekth component of the force on the
be expanded as sphere aR as
N [ IW
||>_R§mMR(m|R€m>v (14) FRk: +<ﬁ) . (21)
O]
wherei=x,y,z If the z axis is chosen as the polar axis for HereR, denotes thé&th component oR, and the subscrigb
the spherical harmonics, then tM4,,, take the form{26] denotes that the derivative is taken with the potential fixed
12 on the boundaries. The positive sign, though seemingly
x :( UR ) (8mq+ Opo1)d, counterintuitive, is actually correct here because the system
Rfm m,1 m,—1 ©¢,1» . . . . .
2 Uit is held at fixedpotentialon the boundarieg38]. Using Eq.
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(20), the derivative in Eq(21) can be expressed as
w

(aRk>q,:

The derivative can be brought inside the bras and kets b
cause these bras and kets do not depen&on

The derivative ofG(s) appearing in Eq(22) can be evalu-
ated straightforwardly. Let us assume that the operhtor
depends on some scalar parametde.g.,R,). Then, if we
introduce the operatdd, =dJl"/ o\, we can calculate the par-
tial derivativedG(s,\)/d\ as follows:

_ Utot€h

) _
8o %Eo,iEo,j<l|<a—RkG(s)>¢|])_ (22)

IBEN _ lim [{sl=T(\) = U, d\} 1= {sl=T(\)} )/ox
0)\ IN—0
= Iimo[{l —[sI-TMN)] U, N sI-T (V)]
IN—

={sI=T(\)}/an
=[sI=-T(M)] U, [sI-T(M)]™

=G(s,\)U,G(s,\). (23

We can now use the above identity to calculate the forc

as given in Egs(21) and(22). The result is

_ UtotehE

Fo =
R 87 5

Kk

2 EoiEo(i[G(s MUR G(SV}), (24)
I

where we have introduced
_r

- IR,

Using the representatiofi9) for G(s,\) [and taking the ei-

genvalues, and the eigenstatgy) to refer to the operator
I'(RY)], we can rewrite Eq(24) as

ety S EoiEoj > 2
8 i ' ' o

B

Ug (25)

(ila)alUg |B)Bl})

FRe= (s-s.)(5-5,)

(26)

Equation(26) is our central formal result.

As noted earlier, Eq(22) bears a resemblance to the
Hellmann-Feynman theorem in quantum mechaf®&: in
both cases, the derivative of an operator with respect to
parameter appears inside a matrix element. But there is

significant difference between the two. In the Hellmann-

Feynman case, the ket which plays the roldipfs an eigen-

state of an operator, which is the actual Hamiltonian of the

system. Although the ket in that case depends\pthe de-

rivative can still be moved inside the bra and ket because th
eigenstates are orthonormalized. Here, by contrast, the stat

liy and|j) are not eigenstates of the operalgrbut they do
not depend on; so the derivative can still be moved inside

the matrix element. This simplification allows forces to be

computed without carrying out numerical derivatives.
Equation(26) may appear to be rather difficult to apply in

practice. But in fact it is computationally quite tractable. Ba-

sically, there are two matrices which are needed as infuits:
and URk:aF/aRk. G is diagonal in the same basis BsAll

PHYSICAL REVIEW E 71, 031503(2005

the matrix elements of are explicitly known in theR¢m
basis[cf. Eq. (7)]. Likewise, the matrix elements &l'/ IR,
can be obtained frorh purely by elementary calculus. Thus,
in order to compute the force componéiy, one first finds
the eigenvalues and eigenfunctionslofland hence ofG),

Shen computes the matr'@URkG in the basis in whicH" is

diagonal, and finally the matrix elemen(i$GUg G|j), from

K
which the force can be computed for any direction of the
applied fieldE,. Since the diagonalization can be done with
standard computer packages, the whole procedure is well
defined and straightforward. Furthermore, ofitdas been
diagonalized, the same basis can be used to compute the
forces for any value of the variabes (1-¢/¢,) %

To illustrate how this formalism can actually be used to
compute the force explicitly, we will consider just a suspen-
sion of two spheres, the two spheres being locat@, 43, 0
and (0, 0, Ry). The total energy is given by Edl). We
consider two configurations for the electric field,
=(0,0,Ep) (we call this the “parallel configuration”and
Eo=(Ey,0,0 (“perpendicular configuration” In both cases,
the component of the force on the spher&gglong the axis
é'oining the two spheres can be calculated using (26).

To compute the force explicitly in this example, we have
to consider how the operatdr changes with the separation
R, of the spheres, so that we can compute the matrix ele-
ments ofURO. According to Eqgs(7) and (9), the diagonal
matrix elements ofl” are independent dR,, while each of
the off-diagonal matrix elements, according to ES), is
proportional to an integer power of [R' —R|=1/R,. Hence
UROEaF/&RO is easily calculated in a closed form. For the
case of two spheres, it is straightforward to calculate this
derivative. The eigenstatds), as well ass,, are already
known if the original eigenvalue problem involving(Ry)
has been solved. The kditsare given by Eq(15). Therefore
it is straightforward to calculate the quantity|Ug |3) and
hence the force, using ER6).

B. Finite frequencies

The results of the previous subsection are readily gener-
alized to finite frequencies. In this case, the total electrostatic
energy will be a sinusoidally varying function of time. The
quantities of experimental interest will be the time-averaged
glectrostatic energyW,, and time-averaged force®V,, is

iven by the generalization of E€), with an extra factor of
/2 to take into account time averaging, namely,

V
= ETRe[ ] . (27)

Elere the applied field is assumed to He,cogwt)

=?2€[E0e"‘“t], €jj(w) is a component of the complex

frequency-dependent macroscopic effective dielectric tensor,

andEg is a real vector. All the remaining equations in Sec.

Il A continue to be valid up to Eq21), which is replaced by
Wy,

Faur = +< IR >q>,

where® is held fixed. The generalization of E(6) is

3 3

> > €eij(@)Eq;Eo;

i=1 j=1

Wav

(28)
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(e}
(e}

—»
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e
=

(a) (b)

FIG. 1. Geometry considered in most of our calculations: Two identical spheres of eadiedocated at the origin and ztR, and are
contained in a host materiad.is the surface-to-surface distance between the two spheres. The complex dielectric function of the spheres is
€(w) and that of the host material &(w). A spatially uniform electric field is applied in thedirection in(a) and in thex direction in(b).

Viotéh 3 3 Despite the large cutoff, most of the contributions to these
Far =~ Rel S22 > Eg B, matrices came fronf <10. Based on this information, we
167 is j=1 set{;a=10 for thel" and Ug matrices in the perpendicular
(la)(alUg |88l geometry. Even with this cutoff, the matrices.involved in this
x> R (29) calculation are large sinaa can be nonzero in the perpen-
. B (s—s,)(s—Sp) dicular case: the dimension of the matrix fér<10 is

: , 2570, (2¢+1)=240.
Expression(29) can be evaluated just asat 0, and thus the The I' matrix for both cases consists of four square

time-averaged force at finite frequency can also be computeglocks' The two diagonal square blocks have diagonal ele-

explicitly. mentss,=¢/(2¢+1) with all off-diagonal elements vanish-
ing. The other two(off-diagona) square blocks have ele-
ments Qoemrerny- FOr the Ug matrix, the diagonal square
blocks have all zero elements, and the elements of the two
We have applied the above formalism to two spheres obff-diagonal blocks are equal @Qymr¢m/JR. Once we
dielectric constant; in a host of dielectric constarg,. In  have calculated all the eigenvalues and eigenvectors df the
most cases, we assume that the spheres have the same radioatrix, we can compute thel ,,B,, and hence the force on
We choose a coordinate system such that the two spheres dhe sphere fron{a|Ug|8), using Eq.(26) or Eq. (29).
located at the origin and é®=RZz, and we consider two As a first example, we have considergd 10°, ¢,=1. The
configurations for the applied electric fielHy=E,Z andE,  choice fore approximates the value== corresponding to
=EgX, as shown in Fig. 1. two metallic spheres at zero frequency in an insulating host
Once the elements of thé and Uz matrices are known, with unit dielectric constant. In Fig. 2, we show theagni-
the calculation of the interparticle force reduces to an eigentude of the calculated radial component of the force acting
value problem. To carry out the various required matrix andon the sphere &, as a function of the sphere separation, for
vector operations, we used GNU Scientific Libraf@SL)  both parallel and perpendicular configurations. Although not
routines[39] and C++ complex class library. In the parallel apparent from the plot, this component of the force is attrac-
configuration, we calculated all the elements inkhandUg  tive (i.e., negativgin the parallel configuration, repulsive in
matrices up tof,,,=80; it is easy to include such a large the perpendicular configuration. We have arbitrarily chosen
cutoff because onlyn=0 needs to be considered for this sphere radii ofa=3.15 mm and a field strength dE,
geometry, the polar and azimuthal anglefoéqualing zero. =25.2 V/mm as in recent experiments carried out in Ref.

IIl. NUMERICAL RESULTS
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1.0 perpendicular configurations at small separation has a mag-
nitude greater than 50 folR=0.632 cm=2+0.002 cm,
which is much larger than the factor of 2 expected from the
dipole-dipole approximation. Further examples of this ratio
are given in Table | for various separations.

In Figs. 3 and 4, we test the effect of different inclusion
dielectric constants, by calculating the force between two
identical spheres, each of radiasand dielectric constart,
in a host of dielectric constarf,=1. We plot the radial com-
ponent of this force, for both the parallel and perpendicular
configurations, as a function &f, for two different separa-
tions between the sphere®=2a+0.01 mm andR=2a
+10.00 mm, where we again uae 3.15 mm. In the second
frequency between two identical spheres of radiusiith =10, C,ase’ the forqes are very close to the, Qipole-dipole predic-
=1, plotted as a function of sphere separation, for electric fieldiOnS. In the first case, the forces exhibit a large departure
parallel to axis between spherg =0), and field perpendicular to from the predictions of the dipole-dipole interaction, and this
that axis( g, =/2). Note the logarithmic scale on the vertical axis. d€parture becomes greatereadeviates more and more from
In both cases, we assume sphere radii of 3.15 mm, and an electr#ity.

field of strength 25.2 V/mm, as in RdfL5]. The force in the par- Next, we consider an example in which the dielectric
allel field case is negativéttractive while that in the perpendicu- functions of both the inclusion and the host depend on fre-

lar field case is positivérepulsive. In this and the following two  quency. Specifically, we choose
plots, the force is calculated at zero frequency.

logy | F| (dyne)

3 (cm)

FIG. 2. Magnitude of the radial component of the force at zero

Aoy

6= €t : (34)
w

[15] (for different materials However, the forces are easily
scaled with both field strength and sphere radii: for fixed

and g, the appropriate scaling relation is and
Fi;'= a®EXf | (&, €, RID), (30) 0.0
. . -0.1 (a)
wheref, andf are functions ofg, ¢, and the ratioR/a. 0o
It is of interest to compare these plots with the same 03 6. =0 52 0.01mm
forces as calculated in the dipole-dipole approximation. For 3 0;_ B
two parallel dipolegp, andp,, located at the origin and at Z -o.s—
R=RZ, thez component of the force acting on the sphere at - 'O"6_
R has the well-known form '0'7_
i P1P2 A 0.8 1
F??YH(R) - 3?[1 - 3(p1 . 2)2], (31) -09 T T T T T T T
00 05 10 1.5 20 25 30 35 40
wherep, and p, are the magnitudes of the two dipole mo- log 0 &
ments, andd, is a unit vector parallel t@, (or p,). For the 0.010
present case, if the spheres are well separated and have equal (b)
radii, the dipole moments can be calculated as if each is an 0.008
isolated sphere in a uniform external electric fi€lgl =
L z 00067 0g, =12, 5 = 0.01mm
€ — o
p1=p,=a’Ey——. (32 = 0.004
€j + 2
For the cases in which the unit vecté() is perpendicular 00029
and parallel t@, the radial component of the force reduces to 0.000
8 T T T T T T T
0.0 05 1.0 1.5 20 25 30 35 40
Fdlp,J_ —_ _Fdlp,H — 6E2 i - log o &
12 512 3a’E; 2| R (33

i i - FIG. 3. The radial component of the force at zero frequency
dip, L dip,ll
These values of ;" andFp3" shown in Fig. 2 agree very between two identical spheres of dielectric constgntradius a

well with those calculated from Ed33) (taking ==) at -3 15 mm, in a host of dielectric constagt=1, at an intersphere
large separatioiR>a) but depart strongly at small separa- gspacing(surface-to-surface separatjoaf 0.01 mm, plotted as a
tion (6=R-2a<a). Just as in the exact calculation, the ra- function of ¢, for (a) electric field parallel to the axis between
dial component of the force in the dipole-dipole limit is re- spheres, andb) field perpendicular to that axis. We assume an
pulsive in the perpendicular case and attractive in the parallallectric field of strength 25.2 V/mm. Negative and positive forces
case. However, the ratio of the two forces in the parallel andienote attractive and repulsive forces, respectively.
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0.0000

(a)
-0.0001

-0.0002 +

-0.0003
g, =0,8=10.00 mm

F (dyne)

-0.0004
-0.0005 -
-0.0006

-0.0007 T T T T T T T
0.0 05 1.0 1.5 20 25 30 3.5 40

log, €

0.00030

b
0.000254 ®)

0.000204

0.000154

F (dyne)

O, = n/2, 6 =10.00 mm
0.000104

0.00005 4

0.00000 T T T T T T T
00 05 10 1.5 20 25 3.0 35 40

logq &

FIG. 4. Same as Fig. 3, but for an intersphere spachg
=10.00 mm.

Aoy,
€= €pp T © s

(35

wherei is the imaginary unitg, and €,9 are the dielectric
constants of the inclusion and the host, andand oy, are
their conductivities, assumed frequency independent. Th
time-averagedorces are now calculated from the generali-

TABLE I. The ratios of the magnitudes of the forces between

two identical spheres in the parallel and perpendicular configura-

tions, calculated at several small separations and assugsigP,
e,=1,a=3.15 mm,Ey;=25.2 V/mm, andw=0. The force is attrac-
tive in the parallel configuration, repulsive in the perpendicular
configuration.

R(cm) Force ratio (R-2a)/(2a)
0.630 602.3 0.0000
0.631 88.5 0.0016
0.632 52.5 0.0032
0.633 38.8 0.0048
0.634 315 0.0063
0.635 26.8 0.0079
0.636 235 0.0095
0.637 21.1 0.0111
0.638 19.2 0.0127
0.639 17.7 0.0143
0.640 16.5 0.0159
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TABLE Il. Parameters for the calculations shown in Figs. 5-8.
The columns denote the material, the real part of its dielectric con-
stant, and its conductivit§in S/m). All except for SrTiQ are used
as host materials in the suspensions.

Material Dielectric constant Conductivity
SrTiOg 249.0 2.0<10°8
Silicone oil 2.54 1.x10°18
Castor oil 4.20 1.x10718
Ethyl benzoate 5.45 5108
Ethyl salicylate 8.65 1.8107
Methyl salicylate 9.46 6.81077
N, gas 1.00058 0

zation of Eq.(26) to finite frequencies, namely, ER9).

We have chosen to use parameters given by [R&, in
a recent experimental study. These are listed in Table II.
However, as discussed further below, it is possible that the
experimentally measured forces include effects beyond the
purely electrostatic interactions included in our mo@gich
as spatially dependent conductivities of the host jluid
Therefore our numerical results should again be considered
as model calculations, not necessarily applicable to the spe-
cific experiments of Refl15]. In all cases, we assume that
the two spherical inclusions are identical, with a dielectric
constant and conductivity characteristic of Srli®Gor the

-0.6 - 6=0.01mm in silicone oil
-0.8
T -1.0+ 6=0.01mm in castor ol
>
T (@)
. -1.2H
a9
e -1.4 4
-1.6
-1.8 T T T T T T T 1T
0o 1 2 3 4 5 6 7 8 9 10
w/2xn (Hz)
0.020+
6=0.01mm in castor oil
0.018+
0
>
= 0.0164
a (b)
53
0.014+
0.012 8=0.01mm in silicone oil
T T T T T T T T T

o/2r (Hz)

FIG. 5. The radial component of the time-averaged force be-
tween two identical spheres of SrTjOplotted as a function of
frequency for the host materials of silicone oil and castor oil, re-
spectively. For both cases we uge0.01 mm,a=3.15 mm, and
Ep=25.2 V/mm. The electric field is parallel to the line connecting
the spheres irfa) and perpendicular to that line ifb). A negative
value denotes an attractive force.
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=}
o)

dipole-dipole force

dipole-dipole force
-L5 N numerical results ~—-—-

numerical results -

2

-2.0

log,q | Fyy / Eg” | (dyne cm’/statvolt)

log,o | Fyy / By | (dyne cm’/fstatvolt)

-3.0+
-4.0 . ‘ . . 4.5 l I I '
0.63 1.00 1.50 2.00 2.50 3.00 063 1.00 1.50 2.00 2.50 3.00
R {em) R (cm)
T 10 S— C 1o —
g dipole-dipole force 2 dipole-dipole force
3 numerical results ~-—-~ 3 -1.54 numerical results -~
mﬂ 0.07 <‘§
8 \ §
2 -1.0 4 o
= (c) i‘
F[!-L]O -20 N olLuc
u.‘% 3.0 1 an
I =
g -4.0 T T T T é“ -4.5 T T T T
- 0.63 1.00 1.50 2.00 2.50 3.00 0.63 100 1.50 2.00 2.50 3.00
R (cm) R (cm)

FIG. 6. (a), (b) Magnitude of the radial component of the time-averaged force between two identical spheres af Sivided byEg.

Also plotted is the corresponding quantity in the dipole-dipole approximation. Both are plotted on logarithmic scale as a function of

separatiorR for a host material of silicone oil and a fixed frequency of 50 Hz. The spheres have radii 3.15 mm. The electric field is parallel
to the line between the two spheres(@ and perpendicular to that line iiv). (c), (d) Same aga) and(b) except that the conductivities of
the spheres and the host are set equal to zero in these calculations. The forces are atti@ttargdift), repulsive in(b) and (d).

host fluid, we have considered the various materials used inorresponds to a very short-ranged interaction. In the long
the measurements of R¢L5]. (In practice, the nonzero con- range limit (R>a), our calculated magnitude ratio agrees

ductivity of SrTiO; has negligible effect on force; we have well with the dipole-dipole prediction, as discussed further
checked this by recalculating the forces with the conductivitypelow. This short-distance deviation from dipole-dipole

set equal to zero, and obtained the same regults. forces is similar to that seen in Figs. 2—4.

In Figs. 5a) and §b), we show the radial component of  Figyre 5 also shows that there is a substantial difference
the calculated time-averaged force on a sphere of Sr&iO  petween the forces for silicone oil and castor oil hosts. This
R in the parallel and perpendicular geometries, for the hosjjifference is due almost entirely to the difference in the static
materials of silicone oil and castor oil. In both cases, Wegjelectric constants of these two hosts: the effect of the finite
assume spheres of radias-3.15 mm, intersphere spacing conductivity disappears by about 10 Hz in both cases,

6=0.01 mm, and applied electric fiekh=25.2 V/mm, asin  \yhereas the difference between the forces persists to much
Ref.[15]. The magnitude of force decreases with increasingigher frequencies.

frequency, but rapidly converges to a constant value in both ‘The calculated time-averaged force between spheres of
cases. The sign of the force is negativean corresponding  srTiQ, in a silicone oil host is plotted versus separation in
to an attractive force, and positiveepulsive in (b). ~ Fig. 6 at a frequency of 50 Hz. In order to see the effects of
If these were strictly dipole-dipole forces, the time- g finite host conductivity, we include this conductivity in
averaged force on the sphereRitwould be given by the Figs. a) and &b) but not in &c) or 6(d). We also set the
generalization of Eq(33) to complex dielectric functions conductivity of the sphere equal to zero ifchand Gd).
and e, # 1, namely Clearly, the host conductivity has very little influence on the
5 forces at this frequency. For comparison, we also show the
pdip, L — _ }Fdip,u - iaGEZR ( €~ €n ) e|. (36) forces as calculated_ in the (.jlpole.—d|pole approximation. As
) €+26) can be seen, there is very little difference between the two
except forR< ~1.5 cm. Even at such small spacings, the
Thus, in particular, the magnitude of the force in the paralleldeviation from the dipole-dipole force is much larger for the
case would be twice as large as that in the perpendiculgrarallel than the perpendicular configuration. At a spacing of
case, as in our previous examples. However, in Fig. 5, thi®.01 mm, the calculated ratio of force magnitudes in the
force ratio is about 50. This difference occurs, as in Fig. 2parallel and perpendicular configurations exceeds a factor of
because of the very small separatigf=0.01 mm), which ~ 100.
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At sufficiently high host conductivity, our model predicts b T 520.01mm in ethyl benzoate
that the force between spheres changes sign as a function of 04y 8=0.0lmm in ethyl salicylate -
frequency. This trend is shown in Fig. 7 for a separation of 8=0.01mm in methyl salicylate
6=0.01 mm between spheres. The host materials used here 5 %511 @)
are ethyl benzoate, ethyl salicylate, and methyl salicylate, all Z
of which have much greater conductivities than silicone oil. L5
The sign change is due mainly to the greater conductivities,
not the differences in static dielectric constants. To check this g4 \ N ettt
point, we recalculated the points of Fig. 7 assuming the same
value of the_ real part of the dielectric constant for all three L3 o 200 400 600 800 1000
host materials; we found that the time-averaged forces /27 (Hz)
changed sign at the same frequencies as in Fig. 7. Math-
ematically, the origin of the sign change is, of course, the 05 17—
dependence of the variatdén Egs.(3) and(29) on the host 0.0 INEL
conductivity.

The time-averaged force for this separation ranges from P (b)
about +1.5 to —1.5 dyn for the parallel case, depending on g 10
the frequency, and from about +0.5 to —3.0 dyn for the per- 2
pendicular case. At high frequencies, the force approaches w15
-1.0 dyn for the parallel case, whatever the host fluid is, and 204 8=0.01mm in ethyl benzoate

. . . 6=0.01mm in ethyl salicylate

approaches a much smaller magnitude in the perpendicular 25 $=0.01mm in methyl salicylate -
case. The rat|o_of thege for_ces dn‘f_ers greatly from the pre- 0 200 400 600 800 1000
dictions of the dipole-dipole interaction, as expected for such © /27 (Hz)

a small separation. At very low frequencies, however, the
force ratio appears to approach the dipole-dipole prediction. FIG. 7. The radial component of the time-averaged force be-
Figure 8 shows the frequency dependence of the timetween two identical spheres of SrTj@eparated by, plotted as a
averaged force between two spheres of SgTi@ silicone  function of frequency for the host materials of ethyl benzoate, ethyl
oil and N, hosts. Both the spacingd between the two salicylate, and methyl salicylate, respectively. The electric field is
spheres and the electric fiel) are larger than those for Fig. Parallel to the line connecting the two spheresahand perpen-
5; they are given in the legends of each figure. We chos#icular to that line in(b). In all cases,6=0.01 mm,a=3.15 mm,
these values for the parameters because they are used in & Eo=25.2 V/mm.
measurements of Rdfl5]. Evidently, the force between the forces in electronic structure theory
two spheres is stronger when the two spheres are immers%portant respects. ’
in & liquid host than in a gas, all the other parameters of the ‘ope striking feature of the present formalism is that it
forces being held constant. This behavior can be understoogjows for the calculation of frequency-dependent forces in a
even in the dipole-dipole limit: it is due to the dependence Ofsimple closed form. Although such forces have been dis-
fche f_orce one,, as in Eq.(36). Also,_ the low-frequency forces - ssed in previous worKL0,11,22,23 the present approach
in Figs. &) and 8b) and especially &) and 8d) depend s re|atively simple and more general, and places both zero
more weakly on frequency than those in Fig. 5. Anothergng finite frequency forces within the same formalism. In our
point is that, even though the intersphere spadigis been ymerical work, we find that these forces can even change
increased to 0.10 and 0.30 mm in these calculations, thgign as a function of frequency. Such frequency dependence
calculated forces are still far from the dipole-dipole limit. js” of course, also present in the long-rarigiole-dipole
Specifically, the ratio of the force magnitudes in the paralleljjmit treated by others in the previous work, but it is even
and perpendicular geometries greatly exceeds the factor ¢figre apparent in the present study.
two expected in the dipole-dipole limit. However, this ratio is Although in the present work calculations have been car-

smaller than that of Fig. 5, presumably because the intefieq out explicitly for two-body interaction, they can readily

but differs from it in the

sphere separations are larger than in that figure. be extended to three-bodgr multibody) forces. The general
equation(26) or (29) can be used to find the force on a
IV. DISCUSSION sphere, no matter how many particles are contained in the

suspension. Indeed, such multibody forces are very likely to
The present work permits calculation of electrical forcesplay important roles in dense suspensions, where they could
in ER fluids in a concise closed form, which permits inclu- possibly lead to “bond-angle-dependent” forces analogous to
sion of all multipoles and all many-body forces in a simpleangle dependent interatomic elastic forces in liquid and solid
way. In our approach, the forces do not need to be calculatesemiconductors. Likewise, the calculations could be readily
as numerical derivatives; instead, we give explicit analyticalextended to more complex particlés.g., hollow spherical
expressions for these derivatives, in terms of a pole spectrushelly, and to nonspherical particles, provided that the reg-
which characterizes the microgeometry of the material. Thaiisite pole spectra and matrix elements can be calculated.
explicit form for the derivatives is somewhat reminiscent of Also, although we have restricted our calculations in this
the Hellmann-Feynman description of quantum-mechanicabaper to the radial component of the interparticle forces,
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-0.6 0.094
os 8=0.30mm in silicone oil 0.092 -
@ 0.090 - 8=0.10mm in silicone oil
a _—~
T 107 T 0,088
) Z (b)
212+ I _ = 0.086
o 8=0.10mm in silicone oil o
0.084
-1.4 7 0.082 4 8=0.30mm in silicone oil
'16 T T T T T T T T T 0080 T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
/21 (Hz) o /2xr (Hz)
-0.25 0.037
-0.30 8=0.30mm in N 3=0.10mm in N,
0354 0.036
T 040 P (d)
g (c) £, 0.035
= 0454 =
z H
e -0.50 . 00344
20.55 4 8=0.10mm in N,
-0.60 0.033 8=0.30mm in N,
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FIG. 8. The radial component of the time-averaged force between two identical spheres of Ssfatated byr, plotted as a function
of frequency for host materials consisting of silicone [d#) and (b)] and N, [(c) and (d)], with gap spacings5=0.10 mm andé
=0.30 mm. The applied electric field =71.3 V/mm anda=3.15 mm for all the cases. The electric field is parallel to the line between
two spheres ina) and(c) and perpendicular to that line i) and(d).

other components can be straightforwardly computed. Fiviscous force, and an electrostatic force. The first two of
nally, the present formalism can be immediately extended tehese forces would be the same as in the previous MD stud-
the important case of magnetorheological fluids. For suches, but the third would be calculated using the present
fluids, Eqgs.(26) or (29) for the force would continue to be method, rather than the dipole-dipole force generally used in
valid, provided that; and e, are replaced by; and up. most other MD studies. It would be of great interest to see
Our calculated frequency-dependent forces, obtained usrow such quantities as viscous relaxation time would be af-
ing parameters quoted for SrTiGpheres in a conducting fected by using our forces in these calculations. In addition
host, may appear to disagree with those obtained in[R6f.  to such calculations, one could study minimum-energy con-
at close spacing. One possible explanation for this discreffigurations of dielectric suspensions in an applied electric
ancy is that the host fluid does not exhibit its usual bulkfield, based on the forces calculated using the methods out-
conductivity when two highly polarizable spheres are placedined here. Many such studies can already be found in the
in it in close proximity. Instead, there could well be nonlinear literature(see, e.g., Ref§45] or [46]). It would be of interest
screening effects of the Debye-Hiickel typé0], which  to extend the present approach to calculating minimum-
would mean that the picture of a two-component compositenergy configurations including nondipolar forces, as out-
is simply not appropriate in this regime. In support of thislined in the present work.
hypothesis, we note that the reported experimental forces are
still frequency dependent at high frequencies, while the com- ACKNOWLEDGMENTS
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