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We describe a method to calculate the electrical force acting on a sphere in a suspension of dielectric spheres
in a host with a different dielectric constant, under the assumption that a spatially uniform electric field is
applied. The method uses a spectral representation for the total electrostatic energy of the composite. The force
is expressed as a certain gradient of this energy, which can be expressed in a closed analytic form rather than
evaluated as a numerical derivative. The method is applicable even when both the spheres and the host have
frequency-dependent dielectric functions and nonzero conductivities, provided the system is in the quasistatic
regime. In principle, it includes all multipolar contributions to the force, and it can be used to calculate
multibody as well as pairwise forces. We also present several numerical examples, including host fluids with
finite conductivities. The force between spheres approaches the dipole-dipole limit, as expected, at large
separations, but departs drastically from that limit when the spheres are nearly in contact. The force may also
change sign as a function of frequency when the host is a slightly conducting fluid.
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I. INTRODUCTION

An electrorheologicalsERd fluid is a material whose vis-
cosity changes substantially with the application of an elec-
tric field f1g. Generally, such fluids are suspensions of spheri-
cal inclusions of dielectric constantei in a host fluid of a
different dielectric constanteh. The viscosity is believed to
change because the spheres acquire electric momentssdipole
and higherd when an electric field is applied, then move un-
der the influence of the electrical forces between these in-
duced moments. These forces typically cause the spheres to
line up in long chains parallel to the applied field, thereby
increasing the viscosity of the suspension. The viscosity re-
laxes to its usual value when the field is turned off, and the
chainlike structure disappears.

ER fluids have potential applications as variable viscosity
fluids in automobile devicesf2g, vibration controlf3g, and
elsewhere. Furthermore, their operating principle is also rel-
evant to other materials, such as magnetorheologicalsMRd
fluids f4g. These are suspensions of magnetically permeable
spheres in a fluid of different permeability, whose viscosity
can be controlled by an applied magnetic field.

To obtain a quantitative theory of ERsand MRd fluids,
one needs to understand the electric-field-induced force

among the spheres. At low sphere concentrations and large
intersphere separations, this force is just that between two
interacting electric dipoles whose magnitude is that of a
single sphere in an external electric field. But at smaller
separations, the force deviates from the dipole-dipole form.
Besides this electrostatic interaction between the spheres,
there are other forces acting on the spheres, including a vis-
cous frictional force from the host fluid, and a hard-sphere
force when the two dielectric spheres come in contact. In the
present paper, we will be concerned only with the electro-
static force.

A number of existing theories go beyond the dipole-dipole
approximation in calculating electrostatic forces in ER fluids
f5–13g, and several experiments have been carried out which
are relevant to forces in the nondipole regimessee, e.g., Refs.
f14,15gd. Klingenberget al. f5g have incorporated both mul-
tipole and multibody effects into the sphere-sphere interac-
tions, using a perturbation analysis. Chenet al. f6g have de-
scribed a multipole expansion for the forces acting on one
sphere in a chain of spheres in a fluid of different dielectric
constant, and find a strong departure from the dipolar limit
when the particles are closer than about one diameter. Davis
f7g has calculated the electrostatic forces between dielectric
spheres in a host fluid directly, using a finite-element ap-
proach to solve Laplace’s equation for a chain of particles in
a host dielectric. In a more recent workf8g, he has used an
integral equation approach to calculate the interparticle
forces in ER fluids, including effects due to time-dependent
application of an external field, and nonlinear fluid conduc-
tivity. A finite-element approach has also been used by Taoet
al. f9g to solve Laplace’s equation and obtain the electro-
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static interactions between particles in a chain of dielectric
spheres in a host fluid; they found, as in Ref.f7g, that the
dipole-dipole approximation is reasonably accurate for large
separations or moderate dielectric mismatches, but fails in
closely spaced particles and large mismatches. Clercx and
Bossisf13g have gone beyond the approximation of dipolar
interactions to include multipolar and many-body interac-
tions, expressed in terms of the induced multipole moments
on each sphere; they also obtain an expression for the forces
in terms of these induced multipole moments.

As discussed further below, the electrical force acting on a
sphere in an electrorheological fluid is basically the gradient
of the total electrostatic energy of that fluid with respect to
the position of the sphere. This total electrostatic energy can,
in turn, be expressed in terms of the effective dielectric ten-
sor of the suspension, a quantity which has been studied
since the time of Maxwell. Indeed, numerous authors have
calculated this tensor in a wide variety of geometries, going
well beyond the regime of purely dipolar interactions. For
example, Jeffreyf16g has calculated the total energy of two
spheres in a suspension as a function of their separation and
the dielectric mismatch. From this total energy, the force can
be obtained numerically as the derivative of this energy with
respect to separation. Recently, the pairwise forces between
spheres of different sizes have been calculated using the so-
called dipole-induced-dipole approximation, and even ap-
proximately including the effects of other spheresf17g. Once
again, the forces were obtained explicitly by numerically dif-
ferentiating the total electrostatic energy with respect to par-
ticle coordinates. McPhedran and McKenzief18g, Suenet al.
f19g, and many others, have calculated the total energy of
spheres arranged in a periodic structure. In principle, forces
could also be extracted from this calculation by taking nu-
merical derivatives, provided that the distortions of the struc-
ture leave it periodic. The energy of a nonperiodic suspen-
sion of many spheres has been studied by Gérardy and
Ausloosf20g and by Fuet al. f21g, in both cases including
large numbers of multipoles. Once again, forces can be ex-
tracted, in principle, from these calculations by taking nu-
merical derivatives of the computed total energies with re-
spect to sphere coordinates.

Several authors have included the effects of finite conduc-
tivity on forces in electrorheological fluids, and have also
considered how such forces depend on frequency. Davisf22g
has analyzed polarization forces and related effects of con-
ductivity in ER fluids. Tanget al. f10,11g have calculated the
attractive force between spherical dielectric particles in a
conducting film. Khusid and Acrivosf12g have considered
electric-field-induced aggregation in ER fluids, including in-
terfacial polarization of the particles, the conductivities of
both the particles and the host fluid, and dynamics arising
from dielectric relaxation. Claro and Rojasf23g have calcu-
lated the frequency-dependent interaction energy of polariz-
able particles in the presence of an applied laser field within
the dipole approximation; they considered primarily optical
frequencies rather than the low frequencies more character-
istic of ER fluids. Maet al. f24g have considered several
frequency-dependent properties of ER systems, starting from
a well-known spectral representationf25–30g for the dielec-
tric function of a two-component composite medium. Fi-

nally, Huangf31g has carried out a calculation of the force
acting in electrorheologicalsolidsunder the application of a
nonuniform electric field, and considering both finite fre-
quency and finite conductivity effects.

A common feature of most of the above approaches is that
they involve first calculating thetotal electrostatic energyof
the suspensions, then obtaining the forces by numerically
differentiating this energy with respect to a particle coordi-
nate. This numerical differentiation is cumbersome and can
be inaccurate. Referencef13g does give an expression for the
force, but in terms of implicitly defined multipoles. In this
paper, by contrast, we describe a method for calculating
these forcesexplicitly, without numerical differentiation.
This approach is computationally much more accurate than
numerically differentiating the energy. While our method
may appear to be merely a computational advance, its addi-
tional accuracy and flexibility should make it widely appli-
cable.

Specifically, our approach allows one to calculate the
electric-field-induced force between two dielectric spheres in
a host of a different dielectric constant, at any separation. It
is applicable, in principle, to spheres of unequal sizes, to
particles of shape other than spheres, to suspensions in which
either the particle or the host or both have nonzero conduc-
tivities, and to systems whose constituents have frequency-
dependent complex dielectric functions. It can also be used
to calculate the electrostatic force on one particle which is
part of a many-particlesystem, and thus is not limited to
two-body interaction. It should thus be useful in quite gen-
eral circumstances including, in particular, nondilute suspen-
sions.

Our approach starts, as do previous calculations, with a
method for calculating the total electrostatic energy of a sus-
pension ofstwo or mored spheres in a host material of dif-
ferent dielectric constant. We choose to express this total
energy in terms of a certain pole spectrum arising from the
quasistatic resonances of the multisphere systemf25–30g.
This representation has previously been used to calculate the
frequency-dependent shear modulus, static yield stress, and
structures of certain ER systemsf24,32–34g. The force on a
given sphere in a multisphere system involves a gradient of
this energy with respect to the position of that sphere. But
rather than evaluating this derivative numerically, as in pre-
vious workf24g, we express this derivative in closed analyti-
cal form in terms of the pole spectrum and certain matrix
elements involving the resonances. This expression is readily
evaluated simply by diagonalizing a certain matrix, all of
whose components are readily computed.

Our approach has formal similarities to the well-known
Hellmann-Feynman expression for forces in quantum-
mechanical systemsf35g. In the quantum-mechanical case,
the force is expressed as the negative gradient of system
energy with respect to an ionic position. This energy is the
expectation value of the Hamiltonian in the ground state.
According to the Hellmann-Feynman theorem, the gradient
operator can be moved inside the matrix element, thereby
eliminating the need to take numerical derivatives. The
Hellmann-Feynman force expression is the basis for many
highly successful molecular dynamics studies in quantum
systemsssee, e.g., Ref.f36gd. In the present classical case,
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the total energy can also be expressed as a certain matrix
element of an operator, and thus, just as in the quantum
problem, the force is the gradient of that expectation value.
In this paper, we shall show that, again as in the quantum
case, the gradient operator can be moved to within the matrix
element, and the need to take a numerical derivative is elimi-
nated. This simplification allows, in principle, the calculation
of forces in very complicated geometries, even though, in the
present paper we shall give only relatively simple numerical
illustrations involving forces between two spherical particles.

The remainder of this paper is organized as follows. In
Sec. II, we present the formalism necessary to calculate the
forces in a system of two or more dielectric spheres in a host
medium, without taking a numerical derivative. In Sec. III,
we give several numerical examples of these forces, at both
zero and finite frequencies, for a two-sphere system. Section
IV presents a concluding discussion and suggestions for fu-
ture work.

II. FORMALISM

Let us assume that we have a composite consisting of
spherical inclusions of isotropic dielectric constantei in a
host of isotropic dielectric constanteh, both of which may be
complex and frequency dependent. We will assume that a
spatially uniform electric field RefE0e

−ivtg is applied in an
arbitrary directionswe takeE0 reald. We also assume that the
system is in the “quasistatic regime.” In this regime, the
productkj!1, wherek is the wave vector andj is a char-
acteristic length scale describing the spatial variation of
esx ,vd. Under these conditions, the local electric field
Esx ,vd=−=F, where F is the electrostatic potential. Fi-
nally, we assume that theRth spherical inclusion is centered
at R, and has radiusaR. The approach which we use auto-
matically includes all local field effects.

Since our force expressions differ slightly at zero and fi-
nite frequencies, we will first present the formalism atv=0,
and then generalize the results to finitev.

A. Zero frequency

If the position of the spheres is fixed, the total electro-
static energy may be written in the form

W=
V

8p
o
i=1

3

o
j=1

3

ee;i jE0,iE0,j , s1d

whereV is the system volume,ee;i j is a component of the
macroscopic effective dielectric tensor, andE0,i is a compo-
nent of the applied electric field. Equations1d is, in fact, a
possible definition ofee;i jsvd f28g. To produce this applied
field, we require thatFsxd=−E0·x at the boundaryS of the
system, which is assumed to be a closed surface enclosingV.
In writing Eq. s1d, we allow for the possibility that the
spheres in the composite are arranged in such a way that the
composite is anisotropic even though its components are not.

For anisotropic composite,ee may be written in terms of
a certain pole spectrum of the composite asf25–30g

1 −
ee

eh
= o

a

Ba

s− sa

, s2d

where

s=
1

1 − ei/eh
, s3d

sa is a pole, andBa is the corresponding residue. The poles
sa are confined to the interval 0øsa,1. For ananisotropic
composite, this form may be generalized to

di j −
ee;i j

eh
= o

a

Ba;i j

s− sa

, s4d

wheredi j is a Kronecker delta function andBa;i j is a matrix
of residues. This form is general, applicable to any two-
component composite material which is made up of isotropic
constituents, but is not necessarily isotropic macroscopically.
As in the isotropic case, the poles are confined to the interval
0øsa,1.

The polessa are the eigenvalues of a certain Hermitian
operatorG, and the residuesBa are determined by the eigen-
vectors of that operator.G is defined in terms of its operation
on an arbitrary functionfsr d by the relation

Gfsr d ; E
vtot

d3r8=8S 1

ur − r 8u
D · =8fsr 8d, s5d

where the integration runs over the total volumevtot of all the
inclusions ofei. As in Ref. f37g, we introduce a “bra-ket”
notation for two potential functions to denote their inner
product,

kfucl ; E
vtot

d3r = f*sr d · = csr d. s6d

Physically, the eigenvalues correspond to the frequencies of
the natural electrostatic modes of the composites, at which
charge can oscillate without any applied field, and the corre-
sponding eigenvectors describe the electric fields of those
modes.

It is convenient to expressG in terms of its matrix ele-
ments between the normalized eigenstates of isolated
spheres. In this basis, and using Eqs.s5d ands6d, it is found
that G has the following matrix elements:

GR,m;R8,8m8 = kcR,muGcR8,8m8l = s,d,,,8dm,m8dR,R8

+ QR,m;R8,8m8s1 − dR,R8d, s7d

wheres, andQR,m;R8,8m8 will be given further below. Inside
the sphere centered atR, cR,msr d is equal to an eigenfunc-
tion or resonance state of that isolated sphere, while outside
that spherecR,msr d=0. The angular dependence ofcR,msr d
is given by the spherical harmonicY,msu ,fd, which has an
order ,m multipole moment of electric polarization. How-
ever, the eigenvalue of this state depends only on,:

sR,m = s, =
,

2, + 1
. s8d
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The quantityQR,m;R8,8m8 represents the matrix element of
G between two states of two different, nonoverlapping
spheressi.e., uR8−Ru.aR+aR8d and is given by

QR,m;R8,8m8

= s− 1d,8+m8
aR

,+1/2aR8
,8+1/2

uR8 − Ru,+,8+1
S ,,8

s2, + 1ds2,8 + 1dD
1/2

3
s, + ,8 + m− m8d!

fs, + md ! s, − md ! s,8 + m8d ! s,8 − m8d ! g1/2

3eifR8−Rsm8−mdP,8+,
m8−mscosuR8−Rd, s9d

whereuR8−R andfR8−R are polar and azimuthal angles of the

vector R8−R, and the functionsP,8+,
m8−m are the associated

Legendre polynomials.
If we denote the eigenfunctions ofG by casr d, thensa and

casr d satisfy the eigenvalue equation

Gcasr d = sacasr d. s10d

SinceG is a Hermitian operator, the eigenvaluessa are real,
and the corresponding eigenfunctions are orthogonal and can
be chosen to be orthonormal. Again, it is convenient to rep-
resent them using a bra-ket notation. In this notation, the
eigenfunctions are denotedual and the orthonormality con-
dition is

kaua8l = da,a8. s11d

The eigenvaluessa are the poles of Eq.s2d or Eq. s4d.
The corresponding residuesBa;i j may be expressed in the

same bra-ket notation as

Ba;i j =
vtot

V
ki ualkau jl ; Ma

i Ma
j* . s12d

The matrix elementMa
i =ki ual is basically the component of

the electric dipole moment of the eigenfunctionual in the ith
Cartesian direction.

It is convenient to expand both the eigenfunctionsual and
the statesuilsi =x,y,zd, in terms of the single-sphere eigen-
functionscR,msr d mentioned above. In bra-ket notation,

ual = o
R,m

AR,m
a uR,ml. s13d

The expansion coefficients satisfy the normalization condi-
tion oR,muAR,m

a u2=1, where the indices,=1,2,… and m
=−, ,−,+1,… , +,, respectively. Similarly, the statesuil may
be expanded as

uil = o
R,m

MR,m
i uR,ml, s14d

where i =x,y,z. If the z axis is chosen as the polar axis for
the spherical harmonics, then theMR,m

i take the formf26g

MR,m
x = S vR

2 vtot
D1/2

sdm,1 + dm,−1dd,,1,

MR,m
y = − iS vR

2 vtot
D1/2

sdm,1 − dm,−1dd,,1,

MR,m
z = S vR

vtot
D1/2

dm,0d,,1. s15d

Thus the matrix elementsMa
i are given explicitly by

Ma
x = o

R
S vR

2V
D1/2

sAR11
a + AR1−1

a d,

Ma
y = − io

R
S vR

2V
D1/2

sAR11
a − AR1−1

a d,

Ma
z = o

R
SvR

V
D1/2

AR10
a . s16d

In other words, the residues of theath eigenfunction are
basically the square of the electric dipole moment of that
mode in thex,y, or z direction.

Combining these results, we can re-express the matrix
elementss4d of the dielectric tensor in bra-ket notation first
as

di j −
ee;i j

eh
=

vtot

V
o
a

ki ualkau jl
s− sa

, s17d

where the explicit forms ofki ual andka u jl are given by Eqs.
s16d.

We now use the above formalism to obtain an expression
for the force on a dielectric sphere centered atR in a sus-
pension consisting of an arbitrary assembly of spheres. First,
we rewrite Eq.s17d as

di j −
ee;i j

eh
=

vtot

V
ki uGssdu jl, s18d

where

Gssd ; o
a

ualkau
s− sa

= ssI − Gd−1 s19d

is a Green’s function for this problem,I is the identity ma-
trix, and the matrix elements ofG are given by Eq.s7d. If the
applied electric field isE0, the total energy takes the form

W=
V

8p
ehE0 ·E0 −

vtoteh

8p
o
i j

E0,iki uGssdu jlE0,j . s20d

We now write thekth component of the force on the
sphere atR as

FRk
= + S ]W

]Rk
D

F

. s21d

HereRk denotes thekth component ofR, and the subscriptF
denotes that the derivative is taken with the potential fixed
on the boundaries. The positive sign, though seemingly
counterintuitive, is actually correct here because the system
is held at fixedpotential on the boundariesf38g. Using Eq.
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s20d, the derivative in Eq.s21d can be expressed as

S ]W

]Rk
D

F

= −
vtoteh

8p
o
i j

E0,iE0,jki uS ]

]Rk
GssdD

F

u jl. s22d

The derivative can be brought inside the bras and kets be-
cause these bras and kets do not depend onRk.

The derivative ofGssd appearing in Eq.s22d can be evalu-
ated straightforwardly. Let us assume that the operatorG
depends on some scalar parameterl se.g.,Rkd. Then, if we
introduce the operatorUl=]G /]l, we can calculate the par-
tial derivative]Gss,ld /]l as follows:

]Gss,ld
]l

= lim
]l→0

fhsI − Gsld − Ul ] lj−1 − hsI − Gsldj−1g/]l

= lim
]l→0

fhI − fsI − Gsldg−1Ul ] lj−1fsI − Gsldg−1

− hsI − Gsldj−1g/]l

= fsI − Gsldg−1UlfsI − Gsldg−1

= Gss,ldUlGss,ld. s23d

We can now use the above identity to calculate the force
as given in Eqs.s21d and s22d. The result is

FRk
= −

vtoteh

8p
o

i
o

j

E0,iE0,jki uGss,ldURk
Gss,ldu jl, s24d

where we have introduced

URk
=

]G

]Rk
. s25d

Using the representations19d for Gss,ld fand taking the ei-
genvaluesa and the eigenstateual to refer to the operator
GsRkdg, we can rewrite Eq.s24d as

FRk
= −

vtoteh

8p
o

i
o

j

E0,iE0,jo
a

o
b

ki ualkauURk
ublkbu jl

ss− sadss− sbd
.

s26d

Equations26d is our central formal result.
As noted earlier, Eq.s22d bears a resemblance to the

Hellmann-Feynman theorem in quantum mechanicsf35g: in
both cases, the derivative of an operator with respect to a
parameter appears inside a matrix element. But there is a
significant difference between the two. In the Hellmann-
Feynman case, the ket which plays the role ofuil is an eigen-
state of an operator, which is the actual Hamiltonian of the
system. Although the ket in that case depends onl, the de-
rivative can still be moved inside the bra and ket because the
eigenstates are orthonormalized. Here, by contrast, the states
uil and u jl are not eigenstates of the operatorG, but they do
not depend onl; so the derivative can still be moved inside
the matrix element. This simplification allows forces to be
computed without carrying out numerical derivatives.

Equations26d may appear to be rather difficult to apply in
practice. But in fact it is computationally quite tractable. Ba-
sically, there are two matrices which are needed as inputs:G
andURk

=]G /]Rk. G is diagonal in the same basis asG. All

the matrix elements ofG are explicitly known in theR,m
basisfcf. Eq. s7dg. Likewise, the matrix elements of]G /]Rk
can be obtained fromG purely by elementary calculus. Thus,
in order to compute the force componentFRk

, one first finds
the eigenvalues and eigenfunctions ofG sand hence ofGd,
then computes the matrixGURk

G in the basis in whichG is
diagonal, and finally the matrix elementski uGURk

Gu jl, from
which the force can be computed for any direction of the
applied fieldE0. Since the diagonalization can be done with
standard computer packages, the whole procedure is well
defined and straightforward. Furthermore, onceG has been
diagonalized, the same basis can be used to compute the
forces for any value of the variables=s1−ei /ehd−1.

To illustrate how this formalism can actually be used to
compute the force explicitly, we will consider just a suspen-
sion of two spheres, the two spheres being located ats0, 0, 0d
and s0, 0, R0d. The total energy is given by Eq.s1d. We
consider two configurations for the electric field:E0
=s0,0,E0d swe call this the “parallel configuration”d and
E0=sE0,0 ,0d s“perpendicular configuration”d. In both cases,
the component of the force on the sphere atR0 along the axis
joining the two spheres can be calculated using Eq.s26d.

To compute the force explicitly in this example, we have
to consider how the operatorG changes with the separation
R0 of the spheres, so that we can compute the matrix ele-
ments ofUR0

. According to Eqs.s7d and s9d, the diagonal
matrix elements ofG are independent ofR0, while each of
the off-diagonal matrix elements, according to Eq.s9d, is
proportional to an integer power of 1/uR8−Ru;1/R0. Hence
UR0

;]G /]R0 is easily calculated in a closed form. For the
case of two spheres, it is straightforward to calculate this
derivative. The eigenstatesual, as well assa, are already
known if the original eigenvalue problem involvingGsR0d
has been solved. The ketsuil are given by Eq.s15d. Therefore
it is straightforward to calculate the quantitykauUR0

ubl and
hence the force, using Eq.s26d.

B. Finite frequencies

The results of the previous subsection are readily gener-
alized to finite frequencies. In this case, the total electrostatic
energy will be a sinusoidally varying function of time. The
quantities of experimental interest will be the time-averaged
electrostatic energyWav and time-averaged forces.Wav is
given by the generalization of Eq.s1d, with an extra factor of
1/2 to take into account time averaging, namely,

Wav =
V

16p
ReFo

i=1

3

o
j=1

3

ee;i jsvdE0,iE0,jG . s27d

Here the applied field is assumed to beE0cossvtd
=RefE0e

−ivtg, ee;i jsvd is a component of the complex
frequency-dependent macroscopic effective dielectric tensor,
andE0 is a real vector. All the remaining equations in Sec.
II A continue to be valid up to Eq.s21d, which is replaced by

Fav,Rk
= + S ]Wav

]Rk
D

F

, s28d

whereF is held fixed. The generalization of Eq.s26d is
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Fav,Rk
= − ReFvtoteh

16p
o
i=1

3

o
j=1

3

E0,iE0,j

3o
a

o
b

ki ualkauURk
ublkbu jl

ss− sadss− sbd G . s29d

Expressions29d can be evaluated just as atv=0, and thus the
time-averaged force at finite frequency can also be computed
explicitly.

III. NUMERICAL RESULTS

We have applied the above formalism to two spheres of
dielectric constantei in a host of dielectric constanteh. In
most cases, we assume that the spheres have the same radius.
We choose a coordinate system such that the two spheres are
located at the origin and atR=Rẑ, and we consider two
configurations for the applied electric field,E0=E0ẑ andE0
=E0x̂, as shown in Fig. 1.

Once the elements of theG andUR matrices are known,
the calculation of the interparticle force reduces to an eigen-
value problem. To carry out the various required matrix and
vector operations, we used GNU Scientific LibrarysGSLd
routinesf39g and C++ complex class library. In the parallel
configuration, we calculated all the elements in theG andUR
matrices up to,max=80; it is easy to include such a large
cutoff because onlym=0 needs to be considered for this
geometry, the polar and azimuthal angles ofR equaling zero.

Despite the large cutoff, most of the contributions to these
matrices came from,,10. Based on this information, we
set,max=10 for theG andUR matrices in the perpendicular
geometry. Even with this cutoff, the matrices involved in this
calculation are large sincem can be nonzero in the perpen-
dicular case: the dimension of the matrix for,ø10 is
2o,=1

10 s2,+1d=240.
The G matrix for both cases consists of four square

blocks. The two diagonal square blocks have diagonal ele-
mentss,=, / s2,+1d with all off-diagonal elements vanish-
ing. The other twosoff-diagonald square blocks have ele-
ments Q0,m;R,8m8. For the UR matrix, the diagonal square
blocks have all zero elements, and the elements of the two
off-diagonal blocks are equal to]Q0,m;R,8m8 /]R. Once we
have calculated all the eigenvalues and eigenvectors of theG
matrix, we can compute theMa ,Ba, and hence the force on
the sphere fromkauURubl, using Eq.s26d or Eq. s29d.

As a first example, we have consideredei =105, eh=1. The
choice forei approximates the valueei =` corresponding to
two metallic spheres at zero frequency in an insulating host
with unit dielectric constant. In Fig. 2, we show themagni-
tude of the calculated radial component of the force acting
on the sphere atR, as a function of the sphere separation, for
both parallel and perpendicular configurations. Although not
apparent from the plot, this component of the force is attrac-
tive si.e., negatived in the parallel configuration, repulsive in
the perpendicular configuration. We have arbitrarily chosen
sphere radii ofa=3.15 mm and a field strength ofE0
=25.2 V/mm as in recent experiments carried out in Ref.

FIG. 1. Geometry considered in most of our calculations: Two identical spheres of radiusa are located at the origin and atz=R, and are
contained in a host material.d is the surface-to-surface distance between the two spheres. The complex dielectric function of the spheres is
eisvd and that of the host material isehsvd. A spatially uniform electric field is applied in thez direction insad and in thex direction insbd.
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f15g sfor different materialsd. However, the forces are easily
scaled with both field strength and sphere radii: for fixedei
andeh the appropriate scaling relation is

F12
',i = a6E0

2f',isei,eh,R/ad, s30d

where f' and f i are functions ofei ,eh and the ratioR/a.
It is of interest to compare these plots with the same

forces as calculated in the dipole-dipole approximation. For
two parallel dipolesp1 and p2, located at the origin and at
R=Rẑ, thez component of the force acting on the sphere at
R has the well-known form

F12
dip,isRd = 3

p1p2

R4 f1 − 3sp̂1 · ẑd2g, s31d

wherep1 and p2 are the magnitudes of the two dipole mo-
ments, andp̂1 is a unit vector parallel top1 sor p2d. For the
present case, if the spheres are well separated and have equal
radii, the dipole moments can be calculated as if each is an
isolated sphere in a uniform external electric fieldE0:

p1 = p2 = a3E0
ei − 1

ei + 2
. s32d

For the cases in which the unit vectorÊ0 is perpendicular
and parallel toẑ, the radial component of the force reduces to

F12
dip,' = −

1

2
F12

dip,i = 3a6E0
2F ei − 1

ei + 2
G2 1

R4 . s33d

These values ofF12
dip,' andF12

dip,i shown in Fig. 2 agree very
well with those calculated from Eq.s33d staking ei =`d at
large separationsR@ad but depart strongly at small separa-
tion sd;R−2a!ad. Just as in the exact calculation, the ra-
dial component of the force in the dipole-dipole limit is re-
pulsive in the perpendicular case and attractive in the parallel
case. However, the ratio of the two forces in the parallel and

perpendicular configurations at small separation has a mag-
nitude greater than 50 forR=0.632 cm=2a+0.002 cm,
which is much larger than the factor of 2 expected from the
dipole-dipole approximation. Further examples of this ratio
are given in Table I for various separations.

In Figs. 3 and 4, we test the effect of different inclusion
dielectric constants, by calculating the force between two
identical spheres, each of radiusa and dielectric constantei,
in a host of dielectric constanteh=1. We plot the radial com-
ponent of this force, for both the parallel and perpendicular
configurations, as a function ofei, for two different separa-
tions between the spheres:R=2a+0.01 mm andR=2a
+10.00 mm, where we again usea=3.15 mm. In the second
case, the forces are very close to the dipole-dipole predic-
tions. In the first case, the forces exhibit a large departure
from the predictions of the dipole-dipole interaction, and this
departure becomes greater asei deviates more and more from
unity.

Next, we consider an example in which the dielectric
functions of both the inclusion and the host depend on fre-
quency. Specifically, we choose

ei = ei0 + i
4psi

v
, s34d

and

FIG. 3. The radial component of the force at zero frequency
between two identical spheres of dielectric constantei, radius a
=3.15 mm, in a host of dielectric constanteh=1, at an intersphere
spacingssurface-to-surface separationd of 0.01 mm, plotted as a
function of ei, for sad electric field parallel to the axis between
spheres, andsbd field perpendicular to that axis. We assume an
electric field of strength 25.2 V/mm. Negative and positive forces
denote attractive and repulsive forces, respectively.

FIG. 2. Magnitude of the radial component of the force at zero
frequency between two identical spheres of radiusa, with ei =105,
eh=1, plotted as a function of sphere separation, for electric field
parallel to axis between spheressuE0

=0d, and field perpendicular to
that axissuE0

=p /2d. Note the logarithmic scale on the vertical axis.
In both cases, we assume sphere radii of 3.15 mm, and an electric
field of strength 25.2 V/mm, as in Ref.f15g. The force in the par-
allel field case is negativesattractived while that in the perpendicu-
lar field case is positivesrepulsived. In this and the following two
plots, the force is calculated at zero frequency.
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eh = eh0 + i
4psh

v
, s35d

where i is the imaginary unit,ei0 and eh0 are the dielectric
constants of the inclusion and the host, andsi and sh are
their conductivities, assumed frequency independent. The
time-averagedforces are now calculated from the generali-

zation of Eq.s26d to finite frequencies, namely, Eq.s29d.
We have chosen to use parameters given by Ref.f15g, in

a recent experimental study. These are listed in Table II.
However, as discussed further below, it is possible that the
experimentally measured forces include effects beyond the
purely electrostatic interactions included in our modelssuch
as spatially dependent conductivities of the host fluidd.
Therefore our numerical results should again be considered
as model calculations, not necessarily applicable to the spe-
cific experiments of Ref.f15g. In all cases, we assume that
the two spherical inclusions are identical, with a dielectric
constant and conductivity characteristic of SrTiO3. For the

TABLE II. Parameters for the calculations shown in Figs. 5–8.
The columns denote the material, the real part of its dielectric con-
stant, and its conductivitysin S/md. All except for SrTiO3 are used
as host materials in the suspensions.

Material Dielectric constant Conductivity

SrTiO3 249.0 2.0310−8

Silicone oil 2.54 1.0310−13

Castor oil 4.20 1.0310−13

Ethyl benzoate 5.45 5.0310−8

Ethyl salicylate 8.65 1.0310−7

Methyl salicylate 9.46 6.0310−7

N2 gas 1.00058 0

FIG. 4. Same as Fig. 3, but for an intersphere spacingd
=10.00 mm.

FIG. 5. The radial component of the time-averaged force be-
tween two identical spheres of SrTiO3, plotted as a function of
frequency for the host materials of silicone oil and castor oil, re-
spectively. For both cases we used=0.01 mm,a=3.15 mm, and
E0=25.2 V/mm. The electric field is parallel to the line connecting
the spheres insad and perpendicular to that line insbd. A negative
value denotes an attractive force.

TABLE I. The ratios of the magnitudes of the forces between
two identical spheres in the parallel and perpendicular configura-
tions, calculated at several small separations and assumingei =105,
eh=1, a=3.15 mm,E0=25.2 V/mm, andv=0. The force is attrac-
tive in the parallel configuration, repulsive in the perpendicular
configuration.

Rscmd Force ratio sR−2ad / s2ad

0.630 602.3 0.0000

0.631 88.5 0.0016

0.632 52.5 0.0032

0.633 38.8 0.0048

0.634 31.5 0.0063

0.635 26.8 0.0079

0.636 23.5 0.0095

0.637 21.1 0.0111

0.638 19.2 0.0127

0.639 17.7 0.0143

0.640 16.5 0.0159
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host fluid, we have considered the various materials used in
the measurements of Ref.f15g. sIn practice, the nonzero con-
ductivity of SrTiO3 has negligible effect on force; we have
checked this by recalculating the forces with the conductivity
set equal to zero, and obtained the same results.d

In Figs. 5sad and 5sbd, we show the radial component of
the calculated time-averaged force on a sphere of SrTiO3 at
R in the parallel and perpendicular geometries, for the host
materials of silicone oil and castor oil. In both cases, we
assume spheres of radiusa=3.15 mm, intersphere spacing
d=0.01 mm, and applied electric fieldE0=25.2 V/mm, as in
Ref. f15g. The magnitude of force decreases with increasing
frequency, but rapidly converges to a constant value in both
cases. The sign of the force is negative insad, corresponding
to an attractive force, and positivesrepulsived in sbd.

If these were strictly dipole-dipole forces, the time-
averaged force on the sphere atR would be given by the
generalization of Eq.s33d to complex dielectric functions
andehÞ1, namely

Fav,12
dip,' = −

1

2
Fav,12

dip,i =
3

2R4a6E0
2ReFS ei − eh

ei + 2eh
D2

ehG . s36d

Thus, in particular, the magnitude of the force in the parallel
case would be twice as large as that in the perpendicular
case, as in our previous examples. However, in Fig. 5, this
force ratio is about 50. This difference occurs, as in Fig. 2,
because of the very small separationsd=0.01 mmd, which

corresponds to a very short-ranged interaction. In the long
range limit sR@ad, our calculated magnitude ratio agrees
well with the dipole-dipole prediction, as discussed further
below. This short-distance deviation from dipole-dipole
forces is similar to that seen in Figs. 2–4.

Figure 5 also shows that there is a substantial difference
between the forces for silicone oil and castor oil hosts. This
difference is due almost entirely to the difference in the static
dielectric constants of these two hosts: the effect of the finite
conductivity disappears by about 10 Hz in both cases,
whereas the difference between the forces persists to much
higher frequencies.

The calculated time-averaged force between spheres of
SrTiO3 in a silicone oil host is plotted versus separation in
Fig. 6 at a frequency of 50 Hz. In order to see the effects of
a finite host conductivity, we include this conductivity in
Figs. 6sad and 6sbd but not in 6scd or 6sdd. We also set the
conductivity of the sphere equal to zero in 6scd and 6sdd.
Clearly, the host conductivity has very little influence on the
forces at this frequency. For comparison, we also show the
forces as calculated in the dipole-dipole approximation. As
can be seen, there is very little difference between the two
except forR, ,1.5 cm. Even at such small spacings, the
deviation from the dipole-dipole force is much larger for the
parallel than the perpendicular configuration. At a spacing of
0.01 mm, the calculated ratio of force magnitudes in the
parallel and perpendicular configurations exceeds a factor of
100.

FIG. 6. sad, sbd Magnitude of the radial component of the time-averaged force between two identical spheres of SrTiO3, divided byE0
2.

Also plotted is the corresponding quantity in the dipole-dipole approximation. Both are plotted on logarithmic scale as a function of
separationR for a host material of silicone oil and a fixed frequency of 50 Hz. The spheres have radii 3.15 mm. The electric field is parallel
to the line between the two spheres insad and perpendicular to that line insbd. scd, sdd Same assad andsbd except that the conductivities of
the spheres and the host are set equal to zero in these calculations. The forces are attractive insad and scd, repulsive insbd and sdd.
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At sufficiently high host conductivity, our model predicts
that the force between spheres changes sign as a function of
frequency. This trend is shown in Fig. 7 for a separation of
d=0.01 mm between spheres. The host materials used here
are ethyl benzoate, ethyl salicylate, and methyl salicylate, all
of which have much greater conductivities than silicone oil.
The sign change is due mainly to the greater conductivities,
not the differences in static dielectric constants. To check this
point, we recalculated the points of Fig. 7 assuming the same
value of the real part of the dielectric constant for all three
host materials; we found that the time-averaged forces
changed sign at the same frequencies as in Fig. 7. Math-
ematically, the origin of the sign change is, of course, the
dependence of the variables in Eqs.s3d ands29d on the host
conductivity.

The time-averaged force for this separation ranges from
about +1.5 to −1.5 dyn for the parallel case, depending on
the frequency, and from about +0.5 to −3.0 dyn for the per-
pendicular case. At high frequencies, the force approaches
−1.0 dyn for the parallel case, whatever the host fluid is, and
approaches a much smaller magnitude in the perpendicular
case. The ratio of these forces differs greatly from the pre-
dictions of the dipole-dipole interaction, as expected for such
a small separation. At very low frequencies, however, the
force ratio appears to approach the dipole-dipole prediction.

Figure 8 shows the frequency dependence of the time-
averaged force between two spheres of SrTiO3 for silicone
oil and N2 hosts. Both the spacingsd between the two
spheres and the electric fieldE0 are larger than those for Fig.
5; they are given in the legends of each figure. We chose
these values for the parameters because they are used in the
measurements of Ref.f15g. Evidently, the force between the
two spheres is stronger when the two spheres are immersed
in a liquid host than in a gas, all the other parameters of the
forces being held constant. This behavior can be understood
even in the dipole-dipole limit: it is due to the dependence of
the force oneh as in Eq.s36d. Also, the low-frequency forces
in Figs. 8sad and 8sbd and especially 8scd and 8sdd depend
more weakly on frequency than those in Fig. 5. Another
point is that, even though the intersphere spacingd has been
increased to 0.10 and 0.30 mm in these calculations, the
calculated forces are still far from the dipole-dipole limit.
Specifically, the ratio of the force magnitudes in the parallel
and perpendicular geometries greatly exceeds the factor of
two expected in the dipole-dipole limit. However, this ratio is
smaller than that of Fig. 5, presumably because the inter-
sphere separations are larger than in that figure.

IV. DISCUSSION

The present work permits calculation of electrical forces
in ER fluids in a concise closed form, which permits inclu-
sion of all multipoles and all many-body forces in a simple
way. In our approach, the forces do not need to be calculated
as numerical derivatives; instead, we give explicit analytical
expressions for these derivatives, in terms of a pole spectrum
which characterizes the microgeometry of the material. The
explicit form for the derivatives is somewhat reminiscent of
the Hellmann-Feynman description of quantum-mechanical

forces in electronic structure theory, but differs from it in the
important respects.

One striking feature of the present formalism is that it
allows for the calculation of frequency-dependent forces in a
simple closed form. Although such forces have been dis-
cussed in previous workf10,11,22,24g, the present approach
is relatively simple and more general, and places both zero
and finite frequency forces within the same formalism. In our
numerical work, we find that these forces can even change
sign as a function of frequency. Such frequency dependence
is, of course, also present in the long-rangesdipole-dipoled
limit treated by others in the previous work, but it is even
more apparent in the present study.

Although in the present work calculations have been car-
ried out explicitly for two-body interaction, they can readily
be extended to three-bodysor multibodyd forces. The general
equations26d or s29d can be used to find the force on a
sphere, no matter how many particles are contained in the
suspension. Indeed, such multibody forces are very likely to
play important roles in dense suspensions, where they could
possibly lead to “bond-angle-dependent” forces analogous to
angle dependent interatomic elastic forces in liquid and solid
semiconductors. Likewise, the calculations could be readily
extended to more complex particlesse.g., hollow spherical
shellsd, and to nonspherical particles, provided that the req-
uisite pole spectra and matrix elements can be calculated.
Also, although we have restricted our calculations in this
paper to the radial component of the interparticle forces,

FIG. 7. The radial component of the time-averaged force be-
tween two identical spheres of SrTiO3 separated byR, plotted as a
function of frequency for the host materials of ethyl benzoate, ethyl
salicylate, and methyl salicylate, respectively. The electric field is
parallel to the line connecting the two spheres insad and perpen-
dicular to that line insbd. In all cases,d=0.01 mm,a=3.15 mm,
andE0=25.2 V/mm.
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other components can be straightforwardly computed. Fi-
nally, the present formalism can be immediately extended to
the important case of magnetorheological fluids. For such
fluids, Eqs.s26d or s29d for the force would continue to be
valid, provided thatei andeh are replaced bymi andmh.

Our calculated frequency-dependent forces, obtained us-
ing parameters quoted for SrTiO3 spheres in a conducting
host, may appear to disagree with those obtained in Ref.f15g
at close spacing. One possible explanation for this discrep-
ancy is that the host fluid does not exhibit its usual bulk
conductivity when two highly polarizable spheres are placed
in it in close proximity. Instead, there could well be nonlinear
screening effects of the Debye-Hückel typef40g, which
would mean that the picture of a two-component composite
is simply not appropriate in this regime. In support of this
hypothesis, we note that the reported experimental forces are
still frequency dependent at high frequencies, while the com-
plex dielectric functions of both host and sphere should be
nearly frequency independent in this regime, leading to a
frequency-independent force in this range.

The present method could readily be combined with stan-
dard molecular dynamics approaches to computedynamical
properties of electrorheologicalsor magnetorheologicald flu-
ids. Specifically, one could carry out molecular dynamics
sMDd calculations, following the approach of several authors
f5,41–44g. In such approaches, the force on a given sphere is
typically expressed as the sum of a hard-sphere repulsion, a

viscous force, and an electrostatic force. The first two of
these forces would be the same as in the previous MD stud-
ies, but the third would be calculated using the present
method, rather than the dipole-dipole force generally used in
most other MD studies. It would be of great interest to see
how such quantities as viscous relaxation time would be af-
fected by using our forces in these calculations. In addition
to such calculations, one could study minimum-energy con-
figurations of dielectric suspensions in an applied electric
field, based on the forces calculated using the methods out-
lined here. Many such studies can already be found in the
literaturessee, e.g., Refs.f45g or f46gd. It would be of interest
to extend the present approach to calculating minimum-
energy configurations including nondipolar forces, as out-
lined in the present work.
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FIG. 8. The radial component of the time-averaged force between two identical spheres of SrTiO3 separated byR, plotted as a function
of frequency for host materials consisting of silicone oilfsad and sbdg and N2 fscd and sddg, with gap spacingsd=0.10 mm andd
=0.30 mm. The applied electric field isE0=71.3 V/mm anda=3.15 mm for all the cases. The electric field is parallel to the line between
two spheres insad and scd and perpendicular to that line insbd and sdd.
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